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Abstract—Veı́culos Aéreos Não Tripulados servindo como
Estações Base UAV-BS (Unmanned Aerial Vehicle Base Stations)
são capazes de restabelecer a conectividade dos usuários em
cenários de desastres naturais. O posicionamento de UAV-BS
apresenta desafios significativos. É necessário adaptar-se dinami-
camente à densidade de usuários e aos requisitos de qualidade
de serviço. Propõe-se neste trabalho a avaliação de cinco al-
goritmos meta-heurı́sticos (ABC, ACO, AG, PSO e TLBO) para
otimizar o posicionamento de UAV-BS, considerando a cobertura
dos usuários, qualidade do sinal e custo computacional. Para
avaliação do desempenho foram utilizados modelos comparativos
que indicaram vantagens do TLBO e PSO.

Index Terms—UAV, Estação base, Algoritmos Meta-heurı́sticos.

Abstract—Unmanned Aerial Vehicles as Base Stations (UAV-
BS) are capable of reestablishing user connectivity in natural
disaster scenarios. Optimizing the positioning of UAV-BS presents
significant challenges, including identifying the most suitable
metaheuristic for implementation. This study proposes the eval-
uation of five metaheuristic algorithms (ABC, ACO, GA, PSO,
and TLBO) to optimize UAV-BS positioning considering user
coverage, signal quality and computational cost. Comparative
models were used to evaluate the performance of the algorithms
indicating superior advantages of TLBO and PSO.

Index Terms—UAV, Base stations, metaheuristic algorithms.

I. INTRODUÇÃO

Veı́culos Aéreos Não Tripulados UAV (do inglês, Un-
manned Aerial Vehicle) têm emergido como uma solução
promissora devido à sua flexibilidade e capacidade de
implantação rápida, atuando como Estações Base BS (do
inglês, Base Station) para restabelecer a conectividade em
cenários de desastres naturais. A otimização do posiciona-
mento de UAV-BS, no entanto, apresenta desafios significa-
tivos. É necessário adaptar-se dinamicamente às mudanças nos
cenários, à densidade de usuários e aos requisitos de qualidade
de serviço (QoS), contribuindo de forma relevante para redes
móveis modernas e futuras.

Algoritmos meta-heurı́sticos são propostos na literatura
para abordar o posicionamento de UAV-BS, incluindo a
otimização por Colônia de Abelhas ABC (do inglês Artificial
Bee Colony Algorithm), a Otimização por Colônia de Formi-
gas ACO (do inglês Ant Colony Optimization Algorithm),
o Algoritmo Genético AG, a Otimização por Enxame de
Partı́culas PSO (do inglês Particle Swarm Optmization) e

a Otimização Baseada em Ensino-Aprendizagem TLBO (do
inglês Teaching-Learning Based Optimization).

Apesar dos avanços significativos no uso de algoritmos
meta-heurı́sticos para otimização do posicionamento do UAV-
BS, ainda há lacunas na literatura quanto à escolha da
meta-heurı́stica mais adequada. Esta pesquisa visa preencher
essa lacuna, comparando o desempenho de diferentes meta-
heurı́sticas para identificar a mais eficiente.

Nesse sentido, este estudo se propõe a implementar e
avaliar métodos de otimização para o posicionamento de UAV-
BS. Especificamente, visa: (1) Comparar e avaliar diferentes
algoritmos meta-heurı́sticos (AG, PSO, ACO, ABC e TLBO)
para determinar a posição ótima ou sub-ótima dos UAV-BS; (2)
Analisar a correlação entre diferentes métricas de desempenho,
como quantidade de usuários conectados, vazão e tempo
de execução; (3) Identificar a meta-heurı́stica mais eficiente
em termos de qualidade de serviço e custo computacional,
fornecendo recomendações práticas para a implementação.

A principal contribuição deste artigo é fornecer uma análise
comparativa do desempenho de cinco meta-heurı́sticas na
otimização do posicionamento de UAV-BS. Este estudo am-
plia o conhecimento teórico sobre algoritmos de otimização,
destacando a importância de selecionar o algoritmo adequado
para maximizar a cobertura de usuários e a qualidade do sinal,
minimizando o tempo de resposta e o custo computacional.

O restante do documento está organizado da seguinte forma:
a Seção II apresenta os trabalhos correlatos. A Seção III
descreve metodologia utilizada. A Seção IV discute os resul-
tados. Finalmente, a Seção V conclui o trabalho.

II. TRABALHOS CORRELATOS

O posicionamento eficaz dos UAVs para maximizar a cober-
tura de usuários é um desafio complexo abordado por diversos
estudos. Em [1], foi proposto um algoritmo hı́brido para a
colocação de UAVs em cidades inteligentes, destacando a
eficácia das abordagens meta-heurı́sticas. Já [2] introduziu
um algoritmo baseado em meta-heurı́stica para maximizar a
cobertura com o número mı́nimo de UAVs.

Em [3] os autores demonstraram a relevância no uso do
PSO propondo um algoritmo para otimizar a cobertura de
estações base em UAVs, enquanto [4] focou na maximização
da cobertura do usuário através da otimização conjunta do



posicionamento do UAV e do fator de compensação de perda
de percurso.

Para a seleção de locais dos UAV-BS, [5] propuseram um
método baseado no algoritmo espiral, integrando ACO para
o planejamento ideal. Adicionalmente, [6] demonstraram a
aplicabilidade do ACO em domı́nios contı́nuos para problemas
de otimização.

Em [7], foi apresentada a utilização do ACO para otimizar
o caminho em computação de borda móvel, enquanto [8]
empregaram o ACO para minimizar o custo do caminho
dos UAVs em Redes de Sensores sem Fio WSN (do inglês,
Wireless Sensor Networks).

A eficiência dos algoritmos genéticos foi destacada em
[9], que otimizaram parâmetros para um controlador adap-
tativo direto no controle de atitude de UAV-BS. Em [10],
foi apresentado um método para maximizar a satisfação do
usuário através de algoritmos genéticos e PSO para posicionar
múltiplos UAV-BS.

O algoritmo ABC foi utilizado no posicionamento de UAVs
como estações base em [12], propondo um método hı́brido
de otimização multiobjetivo para redes 5G. Em [13], foi
apresentado um método eficiente para reconfigurar formações
de UAVs com ABC, considerando restrições como prevenção
de colisões e estabilidade da formação.

O TLBO foi aplicado no posicionamento de UAVs em [14],
otimizando tarefas de emergência de múltiplos UAVs, melho-
rando a eficiência da convergência e garantindo a conclusão
eficiente das missões.

III. METODOLOGIA

Esta seção fornece uma descrição detalhada do ambiente
simulado no qual as soluções de meta-heurı́sticas foram avali-
adas, bem como as métricas utilizadas e a forma de coleta.

A. Ambiente de Simulação

A pesquisa é conduzida em um ambiente de simulação que
modela a propagação do sinal e a interferência em uma área
de 1000m x 1000m, considerando uma frequência de 2.4GHz.
Para a construção do cenário, foi utilizado Python, na versão
3.2.12. Para análise e visualização dos dados, foram utilizadas
as versões mais atualizadas das bibliotecas NumPy (1.26.0) e
Matplotlib (3.9).

No cenário construı́do os usuários são distribuı́dos de forma
aleatória. Entretanto para uma análise comparativa entre os
diferentes tipos de algoritmos meta-heuristicos, é atribuı́do
uma semente na aleatoriedade da posição dos usuários, uti-
lizando o módulo Random do Python, com o objetivo de criar
cenários de busca idênticos para todos os algoritmos.

B. Planejamento de posicionamento

Ao planejar o posicionamento de UAV-BS, a propagação
eletromagnética apresenta vários desafios, que deve consid-
erar a comunicação entre UAV-BS e os usuários terrestres
levando em conta alguns conceitos e fatores que afetam essa
comunicação.

Para calcular a distância dos usuários até os UAV-BS é
utilizada a equação da distância euclidiana em um plano bidi-
mensional, amplamente compreendida, que calcula a distância
entre dois pontos (x, y) e (xi, yi) [15].

C. Modelo de Propagação

Foi utilizado o modelo de perdas no caminho Air-To-Ground
(A2G) [16], que leva em consideração LLoS como a linha
de visão (LoS) e ηLoS como a não linha de visão (NLoS)
entre o UAV-BS e o usuário no solo. Onde LoS e NLoS
são perdas de propagação no espaço livre e dependem do
ambiente, conforme [17]. O modelo é expresso como:

PLLoS(dB) = 20 log10

(
4πfcdij

c

)
+ ηLoS (1)

onde: fc é uma variável que representa a frequência portadora,
dij é a distância em metros, e c é uma constante que representa
a velocidade da luz [16].

D. Relação Sinal-Interferência mais Ruı́do

Assumimos que a Relação Sinal-Interferência mais Ruı́do
(SINR, do inglês Signal-to-Interference-Plus-Noise Ratio) é
utilizada para fornecer limites superiores teóricos para a
capacidade do canal em sistemas de comunicação sem fio.
A SINR representa o cenário onde o ruı́do de fundo e a
intensidade da interferência de outras transmissões simultâneas
também são consideradas.

Neste experimento consideramos que, durante o perı́odo de
tempo em que o UAV-BS está transmitindo dados aos usuários
terrestres, o UAV-BS mantém uma altitude e velocidade con-
stante. Assumimos que possui menos obstáculos para que o
UAV-BS opere eficientemente em alturas menores, 50 metros,
aproveitando melhor a visibilidade direta [18]. Estimamos
que cada nó transmite com a mesma potência, para permitir
comparações diretas entre os diferentes algoritmos, que é o
foco do trabalho. A fórmula para o cálculo do SINR [19]

SINR =
P

I +N
(2)

onde:
- P é a potência do sinal de interesse.
- I é a potência de interferência de outros sinais na rede.
- N é a potência do ruı́do.

E. Cálculo de Shannon

Para calcular a taxa de transmissão ou rendimento da rede,
que indica a taxa de bits transmitidos em um intervalo de
tempo, é utilizada a fórmula de Shannon [20]. A taxa de
usuário alcançável é expressa como:

C = B log2(1 +
PuG

LN0B
) (3)

onde B é a largura de banda alocada por usuário, Pu é a
potência transmitida pelo UAV-BS, G é o ganho da antena
direcional, L representa a perda de percurso definida em (1)
e N0 é a densidade espectral de potência do ruı́do [21].



F. Avaliação Comparativa dos Algoritmos

Para o cenário de avaliação, foi utilizado um computador
equipado com um processador Intel(R) Core(TM) i5-8350U
CPU 1.70GHz - 1.90GHz, com 8GB de memória RAM e uma
placa de vı́deo Intel (R) UHD Graphics 620.

Foram testadas variações de 2 a 6 UAV-BS nos exper-
imentos, executando cada algoritmo 30 vezes para cada
configuração. Essa abordagem permitiu avaliar a convergência
e a capacidade de resiliência dos algoritmos em diferentes
condições.

1) Teste de Significância Estatı́stica: Para avaliar o desem-
penho de diferentes algoritmos foi utilizado o teste de sig-
nificância estatı́stica, especificamente a Análise de Variância
[22] que tem como objetivo verificar a existência de diferenças
significativas entre os algoritmos para cada métrica avali-
ada: quantidade de Usuários Conectados UC, SINR, Vazão
e Tempo de Execução TE.

2) Cálculo de superioridade: A fórmula utilizada para
calcular a superioridade percentual de uma meta-heurı́stica
sobre a outra, é dada por:

S (%) =
(
θ − ι

ι

)
X100 (4)

onde: S(%) é a superiodidade de um algoritmo em relação
ao outro, medida em percentual, θ é o Valor da métrica de uma
Meta-Heurı́stica; ι é Valor da métrica de uma Meta-Heurı́stica
Comparada.

G. Algoritmos de Meta-Heurı́sticos

Neste estudo, buscou-se algoritmos inspirados em diferentes
fenômenos naturais (abelhas, formigas, evolução genética,
comportamento social de partı́culas, e processos de ensino-
aprendizagem), garantindo uma diversidade de estratégias e
mecanismos de solução que cobrem amplamente o espectro
de possı́veis soluções. Ao final de cada meta-heurı́stica busca-
se otimizar o posicionamentos dos UAV-BS de forma a max-
imizar a cobertura e a qualidade do sinal para os usuários.

Os algoritmos meta-heurı́sticos utilizados foram: O ABC
que simula o comportamento forrageiro das abelhas para
encontrar soluções ótimas, possuindo uma estrutura sim-
ples, com poucos parâmetros para ajuste, o que facilita sua
implementação e reduz a carga computacional [23]. O ACO
que baseia-se no comportamento de procura de caminho
das formigas que utilizam o feromônio para otimização de
planejamento de caminho, excelente pare resolver problemas
combinatórios e possui adaptabilidade a mudanças no ambi-
ente, crucial para cenários onde a topologia e a demanda de
rede podem variar [24]. O AG que utiliza conceitos de seleção
natural e genética para evoluir soluções ao longo de várias
gerações, atuando com flexibilidade e robustez em explorar
grandes espaços de busca, sendo eficaz em evitar mı́nimos
locais através de operações genéticas [25]. O PSO que inspira-
se no comportamento social de enxames como os pássaros e
peixes para encontrar soluções ótimas, explorando o espaço de
busca globalmente, usando uma população de partı́culas que
ajustam suas posições com base em suas próprias experiências

e nas dos vizinhos [26]. O TLBO que é um algoritmo baseado
no processo de ensino e aprendizagem em sala de aula onde os
”alunos” (soluções) aprendem do ”professor” (melhor solução)
e entre si, balanceando a exploração sem necessidade de
muitos parâmetros ajustáveis, o que facilita sua implementação
e uso [27].

A Tabela I apresenta os parâmetros da aplicação dos algo-
ritmos para resolver o problema.

TABLE I
PARÂMETROS DOS ALGORITMOS DE META-HEURÍSTICA

Algoritmo Parâmetro Valor
ABC Máximo de iterações 100

Limite 200
ACO Taxa de evaporação 0.1

Feromônios (α) 1
Informação heurı́stica (β) 1
Depósito de feromônio 1
Feromônio inicial 0.5
Máximo de iterações 100

AG Número de gerações 250
Tamanho da população 250
Taxa de mutação 0.1

PSO Número de partı́culas 200
Máximo de iterações 10
Peso da Inércia 0.5
Peso Cognitivo 0.5
Peso Social 0.8

TLBO Máximo de iterações 400
Taxa de aprendizado 1.0

Os parâmetros gerais do cenário são apresentados na Tabela
II.

TABLE II
TABELA DE PARÂMETROS DA SIMULAÇÃO.

Parâmetro Valor
Número de Usuários 100
Número de Pontos UAV-BS 2 - 6
Tamanho do espaço de busca 1000m x 1000m
Potência do Sinal -80dBm
Potência de Ruı́do 38dBm
Frequência 2.4GHz
SINR Desejado 25dB
Altura do UAV-BS 50m
Altura antena receptora 1,2m

H. Função Fitness

A função de fitness deste problema avalia quão bem os
pontos de acesso (UAV-BS) estão distribuı́dos para maximizar
o número de usuários conectados com um SINR desejado. É
definida como:

Fitness =
∑
i

{
1 se SINRi ≥ SINR Objetivo
0 caso contrario (5)

onde i é o usuário avaliado.
Esta formulação contabiliza o número de usuários cujo

SINR do usuário avaliado é maior que o SINR objetivo.



I. Procedimento de Coleta de Dados

1. Inicialização das posições aleatórias dos UAV-BS e
usuários no espaço de busca;

2. Cálculo da SINR para cada par UAV-BS/usuário;
3. Execução dos algoritmos de meta-heurı́sticas para

otimizar as posições dos UAV-BS;
4. Registro das posições ótimas ou subótimas encontradas,

percentual de usuários conectados, SINR alcançado, vazão
(Mbps) e custo computacional (tempo de execução do algo-
ritmo).

IV. RESULTADOS

Na Tabela III são apresentados os resultados das estatı́sticas
F e valor P estabelecidos no teste de significância estatı́stica:

TABLE III
RESULTADOS DA SIGNIFICÂNCIA ESTATÍSTICA

Métrica Estatı́stica F Valor P
Usuários Conectados 14,41 2,46 x 10−11

SINR 1585,89 0,0
Vazão 159,11 2,21 x 10−98

Tempo de execução 85,13 1,49 x 10−59

Os testes de significância estatı́stica demonstraram que o
Valor P, iguais ou próximos a zero, confirmam a hipótese de
que a escolha do algoritmo impacta diretamente nos resultados,
pois quanto mais próximo de zero, maior é a significância
estatı́stica da avaliação.

Na análise dos dados, o desempenho dos diferentes algorit-
mos de otimização é representado na Figura 1, demonstrando o
desempenho quanto à conexão dos usuários para as diferentes
quantidades de UAV-BS.

Fig. 1. Desempenho dos Algoritmos para Usuários Conectados por UAV-BS

Revelou-se que a quantidade de usuários conectados, obti-
dos por meio da métrica fitness, varia significativamente
entre os algoritmos, com o TLBO e o PSO frequentemente
conectando mais usuários em comparação aos outros algorit-
mos.

Percebe-se que o algoritmo PSO apresenta melhores resul-
tados na busca por soluções ótimas quando se trata de usuários
conectados, pois com 4 UAV-BS atinge a conexão máxima de
100% dos usuários e mantendo-se estável. Os algoritmos AG,
ABC e TLBO mostram uma melhoria consistente no número
de usuários conectados à medida que a quantidade de UAV-
BS aumenta, porém alcançam a conexão total somente com 6
UAV-BS, apesar de que com 5 UAV-BS já indicam um alto
nı́vel de eficiência. Todavia o algoritmo ACO não converge

muito bem na cobertura dos usuários, apresentando o menor
desempenho dentre os algoritmos analisados.

A análise comparativa de superioridade de um algoritmo em
relação aos outros algoritmos, considerando 4 UAV-BS, está
apresentado na matriz comparativa da Figura 2:

Fig. 2. Matriz comparativa de superioridade dos algoritmos com 4 UAV-BS.

O eixo X e Y representam respectivamente θ e ι no cálculo
de S(%), onde o PSO apresenta uma superioridade de 10,22%
frente o algoritmo ACO.

No gráfico da Figura 3 a vazão foi consistentemente alta
para todos os algoritmos, com valores em torno de 97 a 100
Mbps. O AG e o ABC, destacaram-se com vazões ligeiramente
superiores, especialmente com 6 UAV-BS. Percebe-se que o
PSO, no momento que tem 4 UAV-BS, onde consegue atigir a
cobertura de todos os usuários, seus resultados possuem uma
menor variância com relação a média, ou seja, os resultados
estão quase na mesma vazão e buscando um percentil menos
ampliado. Entretanto, quando se analisa com 5 UAV-BS, a
variância dos resultados da vazão do PSO aumenta, levando a
identificar que o aumento de UAV-BS no ambiente gera uma
maior interferência de sinal, sem gerar melhoria significativa
nas métricas analisadas. Enquanto que o TLBO atinge seu
melhor desempenho na vazão quando consegue cobrir todos
os seus usuários com 5 UAV-BS, diminuindo sua variância na
vazão, assumindo o mesmo comportamento do PSO.

Fig. 3. Desempenho de cada algoritmo em termos de vazão

O tempo de execução aumentou conforme estava aumen-
tando a quantidade de UAV-BS, entretanto a partir do momento
em que os algoritmos PSO, TLBO e ABC começaram a atingir
o ponto de parada na cobertura de todos os usuários, conforme
apresentado na Figura 1, ocorreu a diminuição do tempo de
execução. Os algoritmos AG e ACO não conseguiram ter
a mesma convergência e continuaram a aumentar o tempo
de execução com o aumento da quantidade de UAV-BS. O
TLBO e o PSO mostraram tempos de execução relativamente
baixos em comparação com os outros algoritmos, sugerindo
uma eficiência computacional superior.



Fig. 4. Desempenho dos algoritmos em razão do tempo por UAV-BS

Os resultados apontam para as seguintes caracterı́sticas:
AG: Desempenho sólido em vazão, com perca no desem-

penho na métrica de tempo de execução.
ABC: Melhor escolha para qualidade de sinal (SINR) e

vazão, com boas médias de usuários conectados.
ACO: Desempenho equilibrado mas com maior variabili-

dade e tempos de execução mais altos.
PSO: Bom desempenho geral, mas com maior variabilidade

e tempos de execução mais altos.
TLBO: Melhor escolha para um desempenho geral consis-

tente, com excelente média em todas as métricas e tempos de
execução rápidos.

V. CONCLUSÕES

Neste artigo, foram comparados cinco algoritmos meta-
heurı́sticos para otimizar o posicionamento de UAV-BS, com-
parando seus desempenhos na cobertura de usuários dis-
tribuı́dos no espaço de busca. Os resultados experimentais in-
dicaram que o TLBO e o PSO superaram os demais algoritmos
nas principais métricas de velocidade de convergência e cober-
tura dos usuários, com TLBO demonstrando uma velocidade
de convergência de 0,64s enquanto que o PSO tem velocidade
média de 2,36s. Entrentanto o PSO alcança uma cobertura
completa dos usuários com 4 UAV-BS, com superioridade de
2% em relação ao TLBO e 8% em relação ao ACO. As análises
mostraram que TLBO e PSO competem de forma próxima
em termos de qualidade de serviço e custo computacional.
Estes achados contribuem para a generalização das abordagens
de posicionamento de UAV-BS garantindo uma diversidade
de estratégias e mecanismos de soluções, bem como abrem
caminho para futuras pesquisas, incluindo a aplicação de
TLBO e PSO em problemas otimização multiobjetivo.
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de algoritmo genético para estimação e otimização de parâmetros de um
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[26] Sánchez-Garcı́a, Jesús, Daniel Gutierrez Reina, and S. L. Toral. ”A dis-
tributed PSO-based exploration algorithm for a UAV network assisting
a disaster scenario.” Future Generation Computer Systems, vol. 90, pp.
129–148, 2019.

[27] Ghambari, Soheila, et al. ”A comparative study of meta-heuristic al-
gorithms for solving UAV path planning.” IEEE Symposium Series on
Computational Intelligence (SSCI), pp. 174–181, 2018.


