AVALIAÇÃO DE ATRIBUTOS HIDROLÓGICOS EXTRAÍDOS DE MODELOS DIGITAIS DE ELEVAÇÃO EM BACIAS HIDROGRÁFICAS URBANAS

Ítalo Rafael Costa de Mira¹; Aluizio Brito Maia¹; Camilo Daleles Rennó¹

¹ Programa de Pós-Graduação em Sensoriamento Remoto (PGSER), Coordenação de Ensino, Pesquisa e Extensão (COEPE), Instituto Nacional de Pesquisas Espaciais (INPE), São José dos Campos, Brasil. italo.rafael@inpe.br;

aluizio.maia@inpe.br; camilo.renno@inpe.br

https://orcid.org/0000-0002-8791-0685

https://orcid.org/0000-0002-0056-6157

https://orcid.org/0000-0001-9920-4473

RESUMEN. El paisaje, como sistema complejo, está influido por las interacciones entre elementos naturales y sociales, especialmente en las zonas urbanas, donde estas interacciones pueden causar desastres naturales como las inundaciones, frecuentes en Brasil. Los estudios hidrológicos son fundamentales para comprender estos procesos, utilizando Modelos Digitales de Elevación (MDE) para predecir escenarios y ayudar en la gestión del agua. Sin embargo, los MDE pueden presentar imprecisiones, como depresiones espurias, que interfieren en la extracción de atributos hidrológicos. Este estudio investiga el impacto del procesamiento de los MDEs en la cuenca del río Tamanduateí, en São Paulo, destacando la importancia de corregir los MDEs para hacerlos hidrológicamente consistentes (MDEHCs). La metodología se basó en la comparación de los atributos hidrológicos extraídos de los MDEHC corregidos y no corregidos, utilizando un drenaje de referencia. Se comprobó que la corrección de los MDEHC da como resultado una extracción más precisa de los atributos hidrológicos, mejorando la gestión de las cuencas urbanas y mitigando las inundaciones.

Palabras-clave: Inundaciones urbanas; estudios hidrológicos; extracción de atributos hidrológicos.

RESUMO. A paisagem, como um sistema complexo, é influenciada por interações entre elementos naturais e sociais, especialmente em áreas urbanas onde essas interações podem causar desastres naturais como inundações, comuns no Brasil. Estudos hidrológicos são fundamentais para entender esses processos, utilizando Modelos Digitais de Elevação (MDE) para prever cenários e auxiliar na gestão da água. No entanto, MDEs podem apresentar imprecisões, como depressões espúrias, que interferem na extração de atributos hidrológicos. Este estudo investiga o impacto do processamento de MDEs na Bacia Hidrográfica do Rio Tamanduateí, em São Paulo, destacando a importância da correção dos MDEs para torná-los hidrologicamente consistentes (MDEHCs). A metodologia baseou-se na comparação entre atributos hidrológicos extraídos de MDEHCs corrigidos e não corrigidos, utilizando uma drenagem de referência. Constatou-se que a correção dos MDEHCs resulta em uma extração mais precisa dos atributos hidrológicos, melhorando a gestão de bacias urbanas e mitigando inundações.

Palavras-chave: Inundações Urbanas; Estudos Hidrológicos; Extração de Atributos Hidrológicos

ABSTRACT. The landscape, as a complex system, is influenced by interactions between natural and social elements, especially in urban areas where these interactions often lead to natural disasters such as floods, common in Brazil. Hydrological studies are essential for understanding these processes, using Digital Elevation Models (DEMs) to predict scenarios and assist in water management. However, DEMs can have inaccuracies, such as spurious depressions, which interfere with the extraction of hydrological attributes. This study investigates the impact of processing these models in the Tamanduateí River Basin in São Paulo, emphasizing the importance of correcting DEMs to make them hydrologically consistent (DEMHCs). The methodology was based on comparing hydrological attributes extracted from corrected and uncorrected DEMHCs, using a reference drainage. It was found that correcting DEMHCs results in more accurate extraction of hydrological attributes, improving management of urban basins and mitigating flooding.

Keywords: Urban Flooding; Hydrological Studies; Extraction of Hydrological Attributes.

1. INTRODUÇÃO

As paisagens urbanas, como sistemas interativos e complexos, geram conflitos entre aspectos sociais e ambientais, resultando frequentemente em desastres, especialmente inundações no Brasil (Neto, 2024).

Para compreender a dinâmica da água e o uso do solo em áreas urbanas (Santos et al., 2019), são essenciais os estudos hidrológicos, incluindo análises baseadas em modelagem hidrológica (Rennó, 2008; Marinho Filho *et al.*, 2012).

Os modelos hidrológicos representam sistemas naturais e permitem prever e descrever com precisão fenômenos físicos como precipitação, evaporação, infiltração e escoamento, envolvidos na dinâmica hidrológica da paisagem (Marinho Filho *et al.*, 2012).

Nesse contexto, as bacias hidrográficas são utilizadas na modelagem hidrológica devido às suas características topográficas (limites, vertentes, declividade e drenagem) que influenciam o regime da água (Rennó, 2008). Esses atributos podem ser obtidos através de modelos, em especial, os Modelos Digitais de Elevação (MDEs).

Os Modelos Digitais de Elevação (MDEs) representam digitalmente o terreno em pixels georreferenciados, obtidos de mapas topográficos ou sensoriamento remoto. Atualmente, MDEs de sensoriamento remoto são a principal fonte de dados sobre a elevação da superfície terrestre, utilizados na caracterização de bacias hidrográficas e na extração de atributos para modelagem hidrológica, como hidrografia, direções de fluxo e áreas de drenagem (Santos *et al.*, 2019).

Segundo Garbrecht e Martz (1999), a extração de atributos hidrológicos a partir de MDEs é viável devido à qualidade dos dados. No entanto, depressões espúrias criadas durante a obtenção de dados por sensores remotos podem comprometer a precisão dos modelos hidrológicos, afetando especialmente a extração da rede de drenagem e outros atributos hidrológicos (Chagas *et al.*, 2010). Nesse contexto, é crucial melhorar os MDEs para garantir a precisão na extração da drenagem e de atributos hidrológicos, removendo depressões espúrias para assegurar sua consistência hidrológica (Hutchinson, 1989; Jardim, 2017).

Portanto, este estudo teve como objetivo geral avaliar como as etapas de pré-processamento dos MDEs impactam a consistência e a qualidade dos atributos hidrológicos extraídos. A análise foi realizada na Bacia Hidrográfica do Rio Tamanduateí, em São Paulo, uma região gravemente afetada pelo antrópico, o que tem contribuído para um aumento nas inundações nos últimos anos (Ramalho, 2007).

A justificativa deste trabalho reside na necessidade de corrigir depressões espúrias e utilizar uma drenagem de referência para desenvolver modelos hidrológicos mais precisos, fundamentais para promover um manejo mais sustentável da água na Bacia do Rio Tamanduateí (Jardim, 2017; Siqueira, 2022).

1.1 Área de estudo

O Rio Tamanduateí percorre diversos municípios, incluindo Santo André, São Caetano do Sul, São Paulo, São Bernardo do Campo e Diadema, desde sua nascente em Mauá até sua foz no Rio Tietê (Santos *et al.*, 2019). Sua bacia hidrográfica abrange aproximadamente 323 km², correspondendo à sub-bacia do Alto Tietê, como ilustrado na Figura 1.

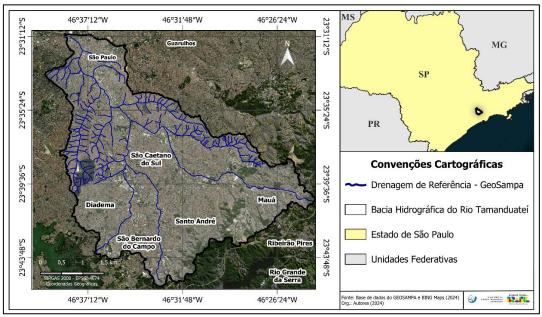


Figura 1. Mapa de localização da Bacia Hidrográfica do Rio Tamanduateí – SP.

Desde a década de 70, a rápida expansão urbana e a presença do maior Polo Industrial e Comercial de São Paulo alteraram drasticamente as características naturais da bacia hidrográfica do Rio Tamanduateí. A canalização, retificação dos cursos d'água, supressão de áreas verdes e impermeabilização das várzeas reduziram os espaços para absorção da água da chuva, resultando em um aumento significativo de enchentes e inundações (Valverde, 2017).

2. MATERIAL E MÉTODOS

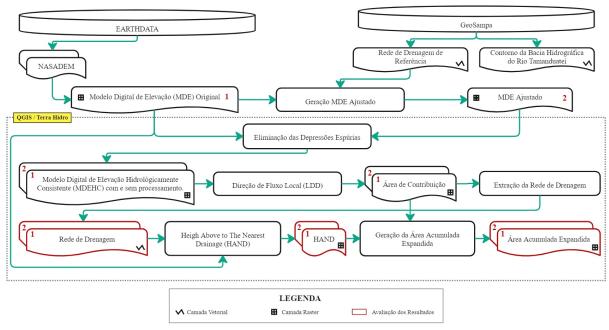


Figura 2. Fluxograma das etapas de trabalho.

2.1 Aquisição e tratamento de dados

2.1.1 Bacia Hidrográfica do Rio Tamanduateí e Rede de Drenagem de Referência

A extração do contorno da bacia hidrográfica do Rio Tamanduateí e a obtenção da drenagem de referência foram realizadas através da plataforma GeoSampa (https://geosampa.prefeitura.sp.gov.br/PaginasPublicas/ SBC.aspx). Essa plataforma permite a visualização de dados no mapa digital da cidade, serviços online e downloads de arquivos em vários formatos (PSMP, 2019). Todos os dados são validados pela Secretaria Municipal de Licenciamento, sendo uma referência em dados espaciais do município (PMSP, 2019)

2.1.2 Modelo Digital de Elevação (MDE)

Visto que os Modelos Digitais de Elevação (MDEs) são fundamentais para a caracterização e extração de atributos hidrológicos, existem várias opções disponíveis em bases de dados de agências espaciais. Para este trabalho, utilizou-se o MDE do NASADEM (Crippen *et al.*, 2016), acessível através do catálogo EARTHDATA (https://www.earthdata.nasa.gov/topics/land-surface/topography/terrain-elevation/digital-elevation-terrain-model-dem).

O NASADEM, com resolução espacial de 1 arco-segundo (cerca de 30 metros), é o sucessor do *Shuttle Radar Topography Mission* (SRTM). Ele foi gerado a partir do reprocessamento dos dados do SRTM, com o objetivo de corrigir erros e artefatos. A escolha do NASADEM se justifica pelo seu reprocessamento, que reduz os erros médios em áreas planas e melhora a precisão vertical, proporcionando informações mais precisas para estudos de modelagem da dinâmica fluvial (Yogi; Stanganini, 2023).

2.1.3 Tratamento de dados

Atualmente, há várias opções de softwares de Sistemas de Informação Geográfica (SIG), tanto comerciais quanto de livre acesso, que permitem realizar diversas análises ambientais. Neste estudo, foi escolhida exclusivamente a plataforma de livre acesso conhecida como *Quantum Geographic Information System* (QGIS).

A escolha do QGIS se deu devido a existência de ferramentas e extensões (*plug-ins*), em especial o TerraHidro desenvolvido pelo Instituto Nacional de Pesquisas Espaciais (INPE), que permite corrigir automaticamente erros do MDE gerando MDEHCs, e assim, permitir a extração de atributos hidrológicos (Jardim, 2017).

2.2 Modelo Digital de Elevação Hidrologicamente Consistente (MDEHC)

As depressões espúrias presentes em Modelos Digitais de Elevação (MDEs) afetam a determinação da direção do fluxo superficial, prejudicando a extração de atributos hidrológicos como direção e acumulação de fluxo de água, rede de drenagem e identificação de áreas potenciais de inundação (Callow *et al.*, 2007).

Atualmente, existem várias abordagens para ajustar um Modelo Digital de Elevação (MDE) para análises hidrológicas, resultando em um Modelo Digital de Elevação Hidrologicamente Consistente (MDEHC). Este modelo pode reproduzir com alta fidelidade o caminho preferencial do escoamento superficial. Neste estudo, foram gerados dois MDEHCs utilizando o método de correção implementado no TerraHidro, que envolve a remoção de pequenas elevações e/ou preenchimento de depressões locais para estabelecer a conectividade de fluxo

em todo o MDE (Jardim, 2017). O primeiro MDEHC utilizou o MDE original, enquanto o segundo utilizou a drenagem de referência para escavar canais através do processo conhecido como "*Stream Burning*" (Hutchinson, 1989), visando melhorar a representação das direções de fluxo.

2.3 Extração da Área Acumulada Expandida, do HAND e da Rede de Drenagem

Os atributos hidrológicos são características do sistema hidrológico e seus processos adjacentes, essenciais para a modelagem hidrológica e previsão de desastres (Araújo, 2016). Entre os atributos relevantes para a análise de inundações estão a Área Acumulada Expandida, o *Height Above to the Nearest Drainage* - HAND e a rede de drenagem (Rennó *et al.*, 2008; Queiroga *et al.*, 2023).

A rede de drenagem permite analisar o padrão de escoamento da água em uma região específica, derivando outros atributos hidrológicos relevantes para a análise de inundação. Ela foi obtida através da limiarização do atributo Área de Contribuição, considerando como drenagem todas as células identificáveis do Modelo Digital de Elevação (MDE).

O HAND, permite identificar áreas propícias ao acúmulo de água e analisar a suscetibilidade natural do terreno a ocorrência de inundações (Jardim, 2017). Para sua obtenção, utilizou-se o atributo da rede de drenagem.

A Área Acumulada Expandida, também conhecida como "Área de Acumulação de Fluxo", permite identificar regiões sob influência de grandes rios, ou seja, mais suscetíveis a inundações (Queiroga *et al.*, 2023). Para sua obtenção, utilizou-se o atributo da rede de drenagem, assim como o HAND.

2.4 Avaliação dos resultados

A avaliação dos resultados foi conduzida através de análises visuais qualitativas, comparando as diferenças nos atributos hidrológicos, como a rede de drenagem, o HAND e a Área Acumulada Expandida, obtidos do MDEHC sem a drenagem de referência e do MDEHC ajustado com a drenagem de referência.

3. RESULTADOS E DISCUSSÃO

3.1 Comparação das Redes de Drenagem

A comparação entre as redes de drenagem do GeoSampa e aquelas derivadas dos Modelos Digital de Elevação Hidrologicamente Consistentes (MDEHCs), com e sem o processamento (ajuste), é apresentada na Figura 3.

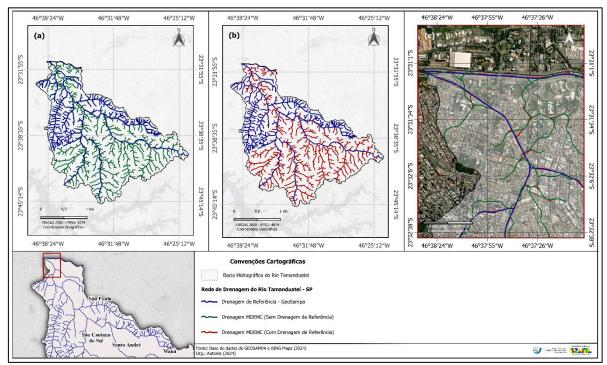


Figura 3. (a) e (b) Diferença entre a rede de drenagem de referência e a rede de drenagem extraída do MDEHC sem e com processamento. (c) Zoom em uma área para avaliar as diferenças.

Na Figura 3(a), as drenagens foram congruentes devido ao processo de rebaixamento da calha dos rios pelo stream-burning, o que melhorou a concordância entre as redes (Ribeiro; Ferreira, 2014). Já na Figura 3(b), a drenagem extraída do MDEHC sem ajuste não correspondeu às posições reais devido à dificuldade em determinar a direção de escoamento em áreas planas e aos erros associados ao MDE sem ajuste.

Para ambos os casos, observa-se uma tendência à formação de novos trechos falsos de drenagem. Isso ocorre devido à dificuldade na extração dos atributos hidrológicos e aos erros presentes no MDE (Callow et al., 2007).

Entretanto, apesar de algumas inconsistências entre as redes de drenagem de referência e as extraídas dos MDEHCs sem e com processamento, verifica-se que o processamento do MDE melhora o traçado da drenagem, tornando sua representação mais fiel à realidade.

3.2 Comparação entre os HANDs

A Figura 4 apresenta os resultados do HAND derivado dos MDEHCs com e sem processamento (ajuste), além da diferença entre eles. Ressalta-se que, para este estudo, os HANDs foram gerados para rede de drenagem extraída superior à terceira ordem, conforme a classificação proposta por Strahler (1952).

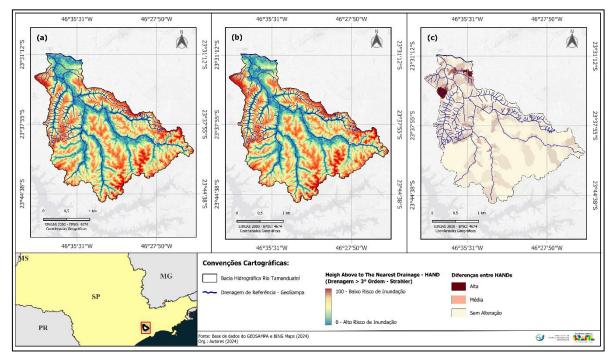


Figura 4. (a) e (b) HAND extraído do MDEHC sem e com processamento, respectivamente. (c) Diferença entre os HANDs sem e com processamento.

Ao comparar os HANDs gerados a partir dos MDEHCs, a maior parte da bacia apresentou mudanças mínimas. Isso ocorre porque o modelo HAND reflete a diferença de elevação entre o terreno e os canais de drenagem. As principais discrepâncias na rede de drenagem entre os dois MDEHCs ocorreram em áreas planas, onde o impacto no HAND foi limitado devido às pequenas variações de elevação entre os canais correspondentes.

No entanto, ao processar o MDEHC com a drenagem de referência utilizando o *stream-burning*, algumas áreas mostraram alterações significativas em diferentes intensidades, visíveis em tons variados de vermelho no mapa 3(c). Esse ajuste aumenta o ordenamento dos canais, resultando em uma delimitação mais abrangente das áreas suscetíveis à inundação quando correlacionadas com a drenagem.

Entretanto, é importante destacar que tanto os HANDs extraídos dos MDEHCs com quanto sem processamento representaram de forma significativa as áreas propensas às inundações. Isso sugere que esse atributo possui potencial para ser utilizado na previsão desses eventos e na extração de outros atributos hidrológicos correlatos.

3.3 Comparação entre as Áreas Acumuladas Expandidas

A Figura 5 apresenta os resultados das áreas acumuladas expandidas extraídas a partir dos MDEHCs, além da diferença obtida entre elas.

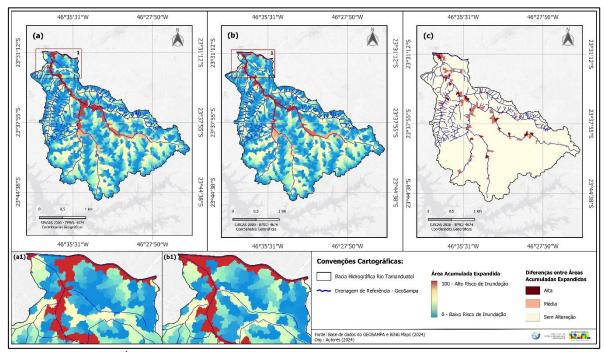


Figura 5. (a) e (b) Área acumulada expandida extraída do MDEHC sem e com processamento, respectivamente. (c) Diferença entre as áreas acumuladas expandidas dos MDEHCs sem e com processamento. (a1) e (b1) zoom da área para avaliar as diferenças.

Na figura 5 (a), a área acumulada expandida extraída de um MDEHC sem processamento mostrou boa acurácia em áreas de maior acúmulo de água e onde estão localizados os rios de maior ordenamento. No entanto, foram observadas incongruências em algumas regiões, o que pode comprometer o mapeamento eficaz das áreas suscetíveis à inundação e a extração de outros atributos hidrológicos, conforme ilustrado na figura 5 (a1).

Entretanto, ao examinar a figura 5 (b) e (b1), observa-se que o processamento do MDEHC melhorou a concordância da área acumulada expandida com a localização dos rios mais ordenados. Isso ocorreu devido à redefinição de algumas áreas como propensas a inundação, devido à sua proximidade com rios de maior ordenamento, como ilustrado na figura 5 (c).

Nesse contexto, aprimorar os Modelos Digitais de Elevação Hidrologicamente Consistentes através do processo de ajuste melhora significativamente a representação das áreas acumuladas expandidas. Isso pode aumentar a precisão na extração de atributos hidrológicos derivados desses modelos, além de melhorar a análise das áreas suscetíveis à inundação.

4. CONCLUSÕES

A extração de atributos hidrológicos usando Modelos Digitais de Elevação (MDEs) obtidos por Sensoriamento Remoto é essencial para compreender os regimes hidrológicos das bacias hidrográficas.

O processamento utilizando uma rede de drenagem de referência melhorou a qualidade da extração dos atributos hidrológicos analisados neste trabalho, o que pode resultar em uma maior precisão no mapeamento das áreas suscetíveis à inundação, além da extração de outros atributos hidrológicos derivados desses analisados.

No entanto, com base nos resultados obtidos e nas suas limitações, futuros desdobramentos deste trabalho considerarão a dinâmica da paisagem, especialmente as alterações na hidrografia da bacia, visando melhorar e implementar outros atributos hidrológicos importantes para o estudo das inundações em bacias hidrográficas urbanas. Isso possibilitará uma análise mais precisa e abrangente, contribuindo para uma gestão mais eficaz dos recursos hídricos e a mitigação dos riscos de inundação.

AGRADECIMENTOS

Os autores agradecem à Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES), Brasil, pelo suporte financeiro e ao Programa de Pós-Graduação em Sensoriamento Remoto do Instituto Nacional de Pesquisas Espaciais (PGSER/INPE) pelo apoio institucional.

REFERÊNCIAS

ARAÚJO, D. C. S. **Dinâmica da umidade e variabilidade espacial de atributos físicos e químicos do solo em uma bacia experimental do semiárido pernambucano.** 2016. 111 p. Dissertação (Mestrado em Engenharia Agrícola) — Universidade Federal Rural do Pernambuco, Recife, 2016.

CALLOW, J. N.; VAN NIEL, K. P.; BOGGS, G. S. How does modifying a DEM to reflect known hydrology affect subsequent terrain analysis? Journal of Hydrology, v. 332, p. 30-39, 2007.

CHAGAS, C. S.; FERNANDES FILHO, E. I.; ROCHA, M. F.; CARVALHO JÚNIOR, W. D.; SOUZA NETO, N. C. **Avaliação de modelos digitais de elevação para aplicação em um mapeamento digital de solos.** Revista Brasileira de Engenharia Agrícola e Ambiental, v. 14, p. 218-226, 2010.

CRIPPEN, R.; BUCKLEY, S.; AGRAM, P.; BELZ, E.; GURROLA, E.; HENSLEY, S.; TUNG, W. **NASADEM global elevation model: Methods and progress. The International Archives of the Photogrammetry**, Remote Sensing and Spatial Information Sciences, v. 41, p. 125-128, 2016.

GARBRECHT, J.; MARTZ, L. W. The assignment of drainage direction over flat surfaces in raster digital elevation models. Journal of Hydrology, v. 193, n. 1-4, p. 204-213, 1997.

HUTCHINSON, M. F. A new procedure for gridding elevation and stream line data with automatic removal of spurious pits. Journal of Hydrology, v. 106, n. 3-4, p. 211-232, 1989.

JARDIM, A. C. Direções de fluxo em modelos digitais de elevação: um método com foco na qualidade da estimativa e processamento de grande volume de dados. 2017. 135 p. Tese (Doutorado em Computação Aplicada) — Instituto Nacional de Pesquisas Espaciais, São José dos Campos, 2017.

MARINHO FILHO, G. M.; ANDRADE, R. S.; ZUKOWSKI, J. C.; MAGALHÃES, L. L. **Modelos hidrológicos: conceitos e aplicabilidades.** Revista de Ciências Ambientais, v. 6, n. 2, p. 35-47, 2012.

NETO, F. L. Brasil bate recorde e registra 1.161 desastres naturais em 2023, segundo Cemaden. 2024. Disponível em: https://www1.folha.uol.com.br/cotidiano/2024/01/brasil-bate-recorde-e-registra-1161-desastres-naturais-em-2023-segundo-cemaden.shtml#:~:text=Ao%20longo%20dos%2012%20meses,por%20dia%20no%20ano%20passado. Acesso em: 02 abr. 2024.

PREFEITURA DE SÃO PAULO. **GeoSampa – Mapa Digital da Cidade de São Paulo.** São Paulo: Prefeitura de São Paulo, 2019. Disponível em: http://geosampa.prefeitura.sp.gov.br/PaginasPublicas/_SBC.aspx. Acesso em: 21 abr. 2024.

QUEIROGA, A. A.; OLIVEIRA, R. G. L.; FILGUEIRA, H. J. A.; CUNICO, C. Mapeamento de áreas suscetíveis à inundação aplicando diferentes modelos digitais de elevação no modelo Height Above the Nearest Drainage (HAND). Revista do Departamento de Geografia, v. 43, p. 1-13, 2023.

RAMALHO, D. Rio Tamanduateí-Nascente à Foz: percepções da paisagem e processos participativos. Paisagem e Ambiente, n. 24, p. 99-114, 2007.

RENNÓ, C. D.; NOBRE, A. D.; CUARTAS, L. A.; SOARES, J. V.; HODNETT, M. G.; TOMASELLA, J. **HAND**, a new terrain descriptor using **SRTM-DEM**: **Mapping terra-firme rainforest environments in Amazonia.** Remote Sensing of Environment, v. 112, n. 9, p. 3469-3481, 2008.

SANTOS, D. F. F.; VALVERDE, M. C.; BRAMBILA, R. B.; FERREIRA, M. C. A. Inundações na Bacia do Rio Tamanduateí – Santo André: Estudo de caso dos dias 10 e 11/03/2019. In: SIMPÓSIO BRASILEIRO DE RECURSOS HÍDRICOS, 23., Foz de Iguaçu. Anais... 2019. Disponível em: https://files.abrhidro.org.br/Eventos/Trabalhos/142/XXIV-SBRH0060-1-20210518-114127.pdf. Acesso em: 25 abr. 2024.

SIQUEIRA, V. L. Modelagem e previsão hidrológica em escala continental para a América do Sul. 2022. 263 p. Tese (Doutorado em Recursos Hídricos e Saneamento Ambiental) — Universidade Federal do Rio Grande do Sul, Rio Grande do Sul, 2022.

STRAHLER, A. N. **Quantitative analysis of watershed geomorphology.** Trans. American Geophysical Union, v. 38, n. 6, p. 920, 1952.

VALVERDE, M. C. A interdependência entre vulnerabilidade climática e socioeconômica na região do ABC Paulista. Ambiente & Sociedade, p. 39-60, 2017.

YOGI, F.; STANGANINI, F. N. Comparação e avaliação de modelos digitais de elevação dos sensores SRTM, ASTER, TANDEM/TERRASAR-X, NASADEM, COPERNICUS DEM e ALOS PALSAR para análise digital de terreno para aplicações no saneamento básico. Research, Society and Development, v. 12, n. 1, p. 1-21, 2023.