

ANÁLISE DE FALHA EM PLACAS DE TROCADOR DE CALOR

Arthur Werneck Ferreira¹ – ferreirawerneck@gmail.com
Brunno Marques de Almeida Barbosa¹ – brunno.mab1@yahoo.com.br
Diel Silva Botão¹ – dielbotao@gmail.com
Filipe Maximiano Viana¹ – filipemaxv@hotmail.com
André Rocha Pimenta² – andre.pimenta@ifrj.edu.br
Sandro Rosa Correa³ – sandro.correa@foa.org.br
Marília Garcia Diniz¹ – diniz@uerj.br

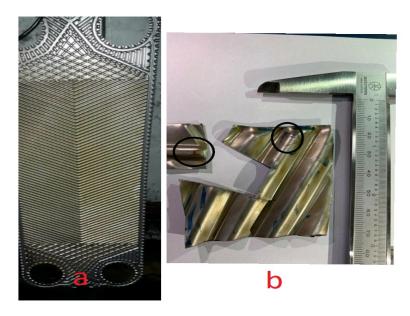
Resumo. Este trabalho investigou os motivos que levaram à falha prematura das placas aletadas de aço inoxidável austenítico AISI 304 (ABNT 304) de um trocador de calor água-óleo. Diversos pontos de corrosão levaram o equipamento ao colapso, em pouco tempo de vida útil. Foram utilizadas técnicas de preparação metalográfica, microscopia óptica (MO), microscopia eletrônica de varredura (MEV), análise química quantitativa por espectroscopia por absorção atômica e medidas de microdureza Vickers (HV). Os resultados indicaram que a composição química das placas estava em desacordo com a especificação para aços AISI 304 e com a presença significativa e deletéria de carbonetos de cromo, o que aliado às condições de operação do equipamento motivaram processos de corrosão intergranular e a perfuração das placas em inúmeros pontos.

Palavras-chave: aço AISI 304, corrosão intergranular, trocador de calor.

1. INTRODUÇÃO

Trocadores de calor são equipamentos utilizados para transportar energia térmica de um fluido que se encontra com temperatura maior para um outro fluido que está a uma temperatura menor (Kakaç et al. 2012). O trocador de calor que foi objeto de estudo neste trabalho [Alfa Laval, 2021] separava os fluidos água e óleo por 211 placas aletadas de aço inoxidável austenítico do tipo AISI 304. Cada placa tinha dimensões de 610 mm de largura por 1940 mm de comprimento e aproximadamente 0,5 mm de espessura e o equipamento operava em regime permanente a uma temperatura média de 43°C, atendendo às demandas de uma linha de produção de uma usina siderúrgica integrada que atualmente produz mais de 6 milhões de toneladas / ano. A Figura 1 apresenta o modelo do trocador de calor e que apresentou falha após 3 meses em operação. Segundo Wassilkowska et. al (2016), sob condições adequadas de operação e limpeza, este tipo de equipamento opera por, no mínimo, três anos sem falhas por corrosão. A Figura 2 (a) mostra uma das placas aletadas do equipamento e a Figura 2 (b) exemplifica amostras que foram extraídas de diversas placas. Foram identificadas, com a vista desarmada, oitenta placas entre as duzentas e onze placas

¹ Universidade do Estado do Rio de Janeiro – Rio de Janeiro, RJ, Brazil


² LISComp, Instituto Federal do Rio de Janeiro, Paracambi, Brasil

³ Centro Universitário de Volta Redonda, Volta Redonda, Brasil

totais do trocador de calor com resíduos de corrosão e pontos de perfuração, tal como indicados na Figura 2 (b). Os pontos de corrosão estavam todos no lado que estava em contato com a água, que era tratada e tinha seus teores de sais e cloro controlados. A presença de cloro livre era medida três-quatro vezes por semana e teve seu valor médio em 1,94 ppm durante os três meses de operação do equipamento, acima do estabelecido como ideal (entre 0,2 – 0,5 ppm), porém muito abaixo do considerado prejudicial para o equipamento em operações de limpeza (330 ppm). A folha de dados do equipamento não especifica o limite para operação [Alfa Laval, 2021].

Figura 1: Trocador de calor de placas aletadas da fabricante Alfa Laval [Alfa Laval, 2021].

Figura 2: (a) Uma placa aletada que separava água do óleo; (b) Amostra retirada da placa aletada com pontos de corrosão em destaque.

O aço inoxidável AISI 304 é indicado e considerado adequado para trocadores de calor por possuir alta resistência a corrosão e oxidação. No entanto, segundo Queiroz (2012), os aços inoxidáveis austeníticos estão sujeitos a corrosão intergranular quando submetidos a temperaturas entre 400°C e 900°C. Esta faixa de temperatura pode levar à precipitação de

carbonetos de cromo que promovem uma redução do cromo solubilizado na matriz e à uma consequente perda da resistência à corrosão.

Ao analisar tubos de aquecedores de gás feitos de aço inoxidável AISI 304 de uma unidade petroquímica, Bahrami et al (2019), avaliaram que próximo a zona termicamente afetada na solda dos tubos, devido a alta temperatura gerada na região, houve a chamada sensitização. Os contornos de grãos estavam ricos em oxigênio, carbono e cromo. A sensitização do aço ocorre quando há a precipitação de carbonetos de cromo nos contornos de grãos. Assim, uma região vizinha aos carbonetos apresenta esgotamento de cromo. Visto que o cromo é o elemento que garante a resistência a corrosão do aço inoxidável, essa região fica suscetível ao processo de corrosão intergranular [ASM International, 2003]. Segundo Li et al (2021), a precipitação de carbonetos de cromo motivada por processos termicamente ativados ou a sua pré-existência, irá provocar a corrosão, dependendo do meio no qual o aço austenítico estiver inserido.

Ao compararem os aços AISI 304, AISI 316L e AISI 3016Ti, Zatkalíková et al (2020) mostraram que o AISI 304 é o que possui a maior propensão ao processo de corrosão intergranular quando em temperaturas mais elevadas que a ambiente.

A Tabela 1 apresenta a composição química especificada para os aços inoxidáveis austeníticos AISI 304. A dureza para chapas e placas recozidas tipicamente usadas para trocadores de calor é de 129 HV (dureza Vickers) [Matweb, 2021].

Tabela 1 – Composição química (% em peso) para aços do tipo AISI 304 [www.matweb.com, 2021].

	C-	Ma	NI:	D	C:	0	Г.
C	G	Mn	Ni	٢	5	0	Fe
<=0,08	18-20	<=2,0	8-10,5	<=0,045	<=1	<=0,03	balanço

O presente trabalho analisou as causas que levaram as placas do trocador de calor a falharem prematuramente.

2. Materiais e Métodos

As placas perfuradas e contendo diversos pontos com resíduos de corrosão foram submetidas a registro fotográfico, observação macroscópica e teste direto de capacidade de imantação através da utilização de um imã. Diversas amostras foram obtidas através de corte a água e utilizando-se a máquina marca Flown modelo Mach 2 2031b.

Para revelar a microestrutura do material e verificar sua conformidade com os padrões normativos (fases presentes e suas características), diversas amostras foram embutidas em resina de baquelite e resina de cura a frio e submetidas à preparação metalográfica. Esta consistiu em lixamento manual com uma sequência de lixas de numeração (220, 400 ,600 ,800 e 1200 Mesh). Com a etapa de lixamento concluída, seguiu-se para o polimento com pasta de diamante com as granulometrias (6, 3 e 1 μm). O ataque químico foi realizado com reagente Vilella (45 ml Glicerol, 15 ml álcool etílico e 30 ml ácido pícrico) por aproximadamente 1 minuto. Após esse procedimento, a amostra foi observada e imagens capturadas através do microscópio óptico ZEISS AxioImager M1m equipado com um sistema digital de captura de imagens.

Amostras preparadas metalograficamente (com e sem ataque químico) também foram objeto de análises por microscópio eletrônico de varredura (MEV) modelo HITACHI - TM3000, operando com 15 KV.

Análise química quantitativa dos elementos químicos foi feita utilizando-se espectroscopia por absorção atômica num espectrômetro modelo MGA 1000. Os teores de carbono e enxofre foram analisados por um modelo Leco CS844.

Testes de microdureza Vickers (HV) foram realizados utilizando-se o equipamento marca Time modelo HVS 1000. Seis medidas foram feitas em locais aleatórios nas amostras das placas e segundo a norma NBR NM ISSO 6507-1: Materiais metálicos [ABNT, 2008]. Foi utilizado uma carga de 3,0 N e tempo de aplicação de 15 s .

3. Resultados e Discussão

A Tabela 2 apresenta os resultados da análise química quantitativa para os elementos químicos no material em estudo.

Tabela 2: Elementos químicos nas placas aletadas, % em peso.

Elemento	С	Mn	S	Ni	Cr
(%)	0,149	0,820	0,006	12,60	28,74

Comparando-se os resultados obtidos com a composição química especificada para o AISI 304 (Tabela 1), nota-se uma discrepância significativa para os valores de carbono, cromo e níquel, isto é, valores superiores ao que seria típico para este tipo de aço. Particularmente o teor de carbono duas vezes maior que o especificado. Sabe-se que a afinidade entre o carbono e o cromo leva a precipitação de carbonetos de cromo, estes últimos responsáveis pela perda de resistência à corrosão e sensitização em aços inoxidáveis. Assim, o controle dos teores de carbono e cromo nos aços da família 300 deve ser rígido [Zatkalíková, 2020].

Ao comparar a resistência à corrosão do aço AISI 304 com o AISI 301, Resende (2016), afirma que a maior resistência à corrosão do aço AISI 304 deve-se ao maior teor de cromo e níquel e ao menor teor de carbono. Assim, o teor de carbono inferido para o material em estudo, duas vezes acima do especificado, propiciará a presença de carbonetos, muito provavelmente gerados durante o processo de fabricação das placas.

A Figura 3 exemplifica um dos muitos aspectos microestruturais obtidos para as placas do trocador de calor. Comparando-se os aspectos obtidos com aspectos fornecidos para aços inoxidáveis da família 300 trabalhados a frio (Figura 4), nota-se semelhança microestrutural [Metallography and Microstructures, 2004].

De acordo com o ASM Metals Handbook (2004), estes aços inoxidáveis da família 300 (Figura 4) foram submetidos ao trabalho mecânico a frio, são compostos por grãos austeníticos e apresentam grãos martensíticos (grãos com aspecto estriado), gerados pelo

trabalho a frio, à partir dos grãos austeníticos. Vale destacar que as amostras testadas apresentaram um caráter levemente magnético ao serem submetidas ao contato com um imã. Como entre os aços inoxidáveis, o do tipo martensítico é o que apresenta menor resistência à corrosão, é de se esperar que a presença de alguma martensita no aço austenítico venha a provocar alguma diminuição nesta propriedade [Resende, 2016].

Observa-se ainda, no aspecto microestrutural exemplificado na Figura 3, a presença de diversos pontos de tonalidade escura. Sabe-se que a presença de carbonetos em aços inoxidáveis é tipicamente revelada pela presença destes pontos de tonalidades mais escuras ou mais claras, dependendo do ataque químico realizado. Palácio (2008) ao analisar o grau de sensitização e a presença de carbonetos de cromo em um aço inoxidável AISI 304 que passou pelo processo de tratamento térmico, mostrou uma típica estrutura austenítica com a presença de pontos escurecidos disseminados pelo material (Figura 5), em especial ao redor dos contornos de grão e que foram confirmados como carbonetos de cromo.

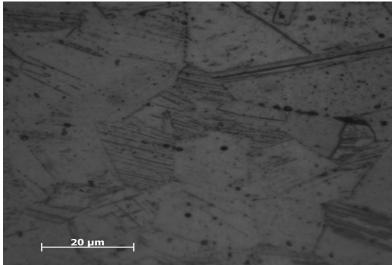
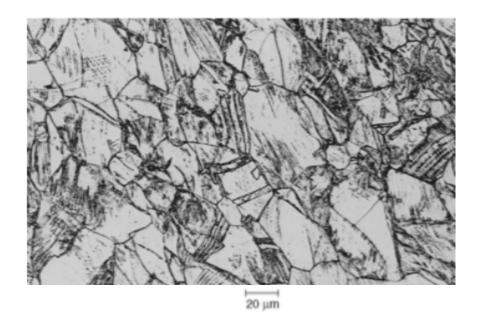
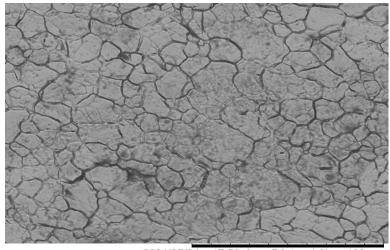
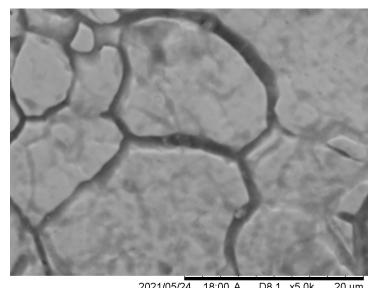


Figura 3: Aspecto microestrutural para a placa do trocador de calor água-óleo. MO, ataque Villela.




Figura 4: Imagem extraída de ASM Metals Handbook (2004); Aspecto microestrutural para aço inoxidável da família 300, trabalhado a frio. MO, Ataque químico com reagente Ralph.


Figura 5: Imagem extraída de capturada por Palácio (2008); Aspecto microestrutural para AISI 304 submetido a tratamento térmico para precipitação e carbonetos de cromo. MO, ataque químico Vilella.

O valor médio de microdureza encontrado foi de 279 HV±13. Essa dureza é o dobro do que seria esperado para uma chapa de aço AISI 304 recozida de (129 HV), o que comprovou que as placas foram submetidas a trabalho mecânico a frio e com isso a possível presença da fase martensita [Matweb, 2021].

As Figuras 6 e 7 mostram aspectos micrográficos que foram obtidos por MEV para regiões no entorno dos pontos de corrosão, como indicados na Figura 2 (b). As imagens mostram aspectos típicos de intensa corrosão intergranular. Esse resultado está em concordância com os encontrados quando há a presença de carbonetos de cromo e consequente sensitização do material em regiões próximas aos contornos de grãos [Melo, 2018].

2021/05/24 17:58 A D8.1 x1.0k 100 um Figura 6: Aspecto microestrutural de corrosão intergranular, MEV.

2021/05/24 18:00 A D8.1 x5.0k 20 um Figura 7: Detalhe do aspecto microestrutural de corrosão intergranular, MEV.

4. Conclusões

O aço encontrava-se com uma composição química diferente do especificado pelo fabricante. Foi encontrado um valor duas vezes superior de carbono e 1,4 vezes maior de cromo. As concentrações elevadas de carbono e cromo potencializaram a formação de carbonetos de cromo e consequentemente a sensitização do material em ambiente de trabalho acima da temperatura ambiente e com a presença de água, mesmo com teores baixos de íons cloro. A presença de carbonetos de cromo e o processo de corrosão intergranular associados à sensitização foram identificados.

A análise da microestrutura e dureza do material em estudo, indicaram a presença de alguma martensita na sua estrutura. Essa martensita foi oriunda, muito provavelmente, do trabalho a frio pelo que o material passou durante o seu processo de fabricação. Vale destacar que o aço inoxidável martensítico é o que apresenta, dentre os aços inoxidáveis, a menor resistência à corrosão, entretanto, equipamentos como trocadores de calor poderão conviver

com a presença da martensita dependendo da temperatura e fluidos em contato, particularmente equipamentos que operam com água tratada e com temperaturas pouco acima da temperatura ambiente.

Considerando as técnicas de caracterização utilizadas, concluiu-se que o fator principal que levou o aço das placas aletadas a apresentar pites de corrosão e falha prematura em operação foi a sua composição química em desacordo com a norma padrão. Este fato, possibilitou a ocorrência do fenômeno de sensitização, o que fez com que o aço perdesse a sua característica de ser resistente ao processo corrosivo no ambiente em que operava.

Agradecimentos

Os autores agradecem ao Programa de Redes de Pesquisa em Nanotecnologia financiado pelo Projeto FAPERJ E-26/010.000979/2019.

O presente trabalho foi realizado com apoio da Coordenação de Aperfeiçoamento de Pessoal de Nível Superior - Brasil (CAPES) - Código de Financiamento 001.

REFERÊNCIAS.

Alfa Laval: www.alfalaval.com, consulta realizada em 25 de junho de 2021.

ASM Handbook, Volume 9: Metallography and Microstructures G.F. DOI: 10.1361/asmhba0003779

Bahrami, Abbas Taheri, Peyman. (2019). A Study on the Failure of AISI 304 Stainless Steel Tubes in a Gas Heater Unit. Metals. 9. 969. 10.3390/met9090969.

Corrosion: Fundamentals, Testing, and protection: American Society for Testing Materials, Volume 13A, ASM International, 2003.

Kakaç, S.,Liu, H., Pramuanjaroenkij, A. (2012). Heat Exchangers: Selection, Rating, and Thermal Design, Second Edition (2nd ed.). CRC Press.

Longyi Li, Jing Yan, Jie Xiao, Lan Sun, Hongyuan Fan, Jun Wang, A comparative study of corrosion behavior of S-phase with AISI 304 austenitic stainless steel in H2S/CO2/Cl- media, Corrosion Science, Volume 187,2021,109472,ISSN 0010-938X.

Matweb: http://www.matweb.com/, consulta realizada em 03 de agosto de 2021.

Melo, Luis Felipe. Pericole, Victor E. N. A. Ramiro, Adriano P. Corrosão Intergranular dos Aços Inoxidáveis AISI 304 e AISI 316. Centro Universitário de Anápolis - UniEvangélica. 2018.

Palácio, Felipe de Oliveira. Efeito do Tratamento Térmico no Grau de Sensitização do Aço Inoxidável Austenítico AISI 304, avaliado por método de reativação eletroquímica potenciodinâmica na versão ciclo duplo (DL-EPR). Trabalho de Conclusão de Curso. Engenharia Mecânica. Universidade Federal do Espírito Santo. 2008.

Queiroz, Alexandre. AISI 304 Steel Intergranular Corrosion (Failure Analysis). SAE Technical Papers. 10.4271/2012-36-0444. 2012.

Resende, Washinton Carvalho Tricote. Estudo da Resistência à Corrosão por pites dos aços inoxidáveis austeníticos AISI 301 E AISI 304 submetidos ao processo de soldagem TIG. Trabalho de Conclusão De Curso. Engenharia Mecânica. Universidade Federal de Juiz de Fora. 2016.

Wassilkowska, Anna Skowronek, Tadeusz Rybicki, Stanisław. Microstructure investigation of premature corroded heat exchanger plates. Materialprufung. 58. 10.3139/120.110837. 2016. Zatkalíková, Viera Markovičová, Lenka Uhríčik, Milan Hanusová, Patrícia. (2020).

Susceptibility to the intergranular attack in austenitic stainless steels. IOP Conference Series: Materials Science and Engineering. 726. 012017. 10.1088/1757-899X/726/1/012017

FAILURE ANALYSIS ON HEAT EXCHANGE PLATES.

Abstract. This work investigated the reasons that led to the premature failure of austenitic stainless steel AISI 304 (ABNT 304) finned plates of a water-oil heat exchanger. Several points of corrosion caused the equipment to collapse in a short lifespan. Metallographic preparation techniques, optical microscopy (MO), scanning electron microscopy (SEM), quantitative chemical analysis by atomic absorption spectroscopy and Vickers microhardness (HV) measurements were used. The results indicated that the chemical composition of the plates was in disagreement with the specification for AISI 304 steels and with the significant and deleterious presence of chromium carbides, which together with the equipment operating conditions led to intergranular corrosion processes and plate perforation at numerous points.

Keywords: AISI 304 steel, intergranular corrosion, heat exchanger.