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Resumo. O presente artigo tem como objetivo principal apresentar os aspectos computacionais do
método de Weeks quando aplicado na inversão numérica da Transformada de Laplace para a obtenção
da solução de uma Equação Diferencial Parcial Parabólica. Esta técnica é caracterizada pelo uso dos
polinômios de Laguerre como base para a aproximação numérica. No desenvolvimento deste trabalho,
os resultados obtidos de forma numérica foram comparados com os gerados analiticamente. Além disso,
diferentes valores para as variáveis x e t foram testados, a fim de verificar a precisão e eficácia do método
utilizado. Para tal, foi empregada a métrica do Erro Absoluto Médio, com o objetivo de estimar o número
de termos necessários no somatório, chamado N ótimo (No), e obter o melhor resultado entre as soluções
anaĺıticas e numéricas.

Palavras-chave. Equação Diferencial Parcial Parabólica; Método de Weeks; Transformada de Laplace;
Inversa Numérica.

1. INTRODUÇÃO

As Equações Diferenciais (ED) são o suporte matemático para diversas áreas da

ciência e engenharia [18] e surgem a partir da tentativa de formular ou descrever fenômenos

f́ısicos em termos matemáticos. São equações que envolvem derivadas de uma função des-

conhecida, podendo ser classificadas como ordinárias (EDOs) (com apenas uma variável

independente) ou parciais (EDPs) (com mais de uma variável independente) [18]. Entre

as EDPs, destacam-se as Equações Diferenciais Parciais Parabólicas (EDPPs) que estão

presentes em diferentes contextos de aplicações, tais como, no estudo das variações de tem-

peraturas no solo [9], em problemas envolvendo difusão de part́ıculas [5] e na mecânica

de fluidos [15].

Entre os diferentes métodos para resolução de EDPPs, destaca-se a Transformada

de Laplace (TL). Segundo Pacheco [10], a TL pode ser caracterizada pela aplicação de um

operador integral em uma função f , geralmente dependente do tempo t. Por meio desse

procedimento, f é conduzida a um novo domı́nio, chamado “domı́nio de Laplace”, onde

a dependência é em termos da variável s e as manipulações algébricas são, normalmente,

mais simples.

Particularmente, quando se usa a TL para resolução de problemas f́ısicos modela-

dos matematicamente por EDPPs, as correspondentes soluções são escritas em função da

variável s [1]. Neste caso, faz-se necessário retornar ao domı́nio de origem por meio da

inversão da Transformada de Laplace. Porém, dependendo da complexidade do problema
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estudado, a inversão da TL por meios anaĺıticos torna-se inviável. A partir de tal neces-

sidade e da busca por resultados cada vez mais precisos, surgem os métodos de inversão

numérica da TL [1], [13]. Existem na literatura diferentes técnicas de inversão numérica

as quais podem se basear, por exemplo, no emprego das aproximações por séries de Fou-

rier [8], na fórmula de Post-Widder [16], na expansão da função original em uma série de

funções ortogonais [4], ou ainda, na deformação do contorno de integração de Bromwich

[12].

Dentro deste contexto, este trabalho consiste na aplicação da inversão da Transfor-

mada de Laplace de maneira numérica e anaĺıtica na resolução de uma Equação Dife-

rencial Parcial Parabólica [3]. Para a solução numérica, é utilizado o método de Weeks,

desenvolvido em 1965, no qual faz-se uma expansão em série da f em termos das funções

ortonormais de Laguerre [4]. O Erro Absoluto Médio, entre os perfis anaĺıtico e numérico,

é computado e empregado como métrica para a escolha do N ótimo (No) na tentativa

de obter as melhores aproximações para os resultados em comparação aos obtidos ana-

liticamente. Testes para diferentes valores de t (t = 0,005, t = 0,05 e t = 0,5) e x são

realizados e registrados na forma de tabelas. São, ainda, apresentadas figuras dedicadas

a ilustração, não só dos testes de varredura para obtenção do No para cada t escolhido,

mas também do comportamento da solução da EDPP propriamente dita.

Para uma melhor compreensão, este artigo foi organizado da seguinte maneira: a

seção 2 descreve o método de Weeks, técnica numérica utilizada para a resolução da

Equação Diferencial Parcial Parabólica. Na seção 3, faz-se a apresentação da equação a

ser resolvida, do equacionamento após a aplicação da TL e da solução anaĺıtica. Ainda,

são fornecidos os resultados obtidos por meio das simulações feitas com o algoritmo de

inversão numérica e a expressão para o cálculo do Erro Absoluto Médio. A seção 4 é

dedicada às considerações acerca da eficiência do método e apresentação das perspectivas

para trabalhos futuros.

2. METODOLOGIA

O método de Weeks para a inversão numérica da Transformada de Laplace consiste

na aproximação da função em seu domı́nio inicial em termos da função transformada,

utilizando os polinômios de Laguerre como base da expansão. Segundo Wang e Zhan [16],

essa aproximação é dada por:

fW (t) ≈ eσt
N∑
j=0

ajLj

(
t

g

)
, (1)

onde Lj() representa o j-ésimo polinômio de Laguerre [4], aj é o coeficiente de Taylor.

ST6 2



XI ERMAC-RS, IME-UFRGS, Porto Alegre – 02 a 04 de julho de 2025

Ainda

σ = Ψ− 1

2g
, g = Tmax

N
, Ψ =

(
α + 1

Tmax

)
H

(
α + 1

Tmax

)
,

sendo g um fator de escala, H() a função de Heaviside, N a quantidade de termos adotados

no somatório dos polinômios de Laguerre e Tmax o maior valor de t para o intervalo onde

a função é avaliada. Neste estudo, utiliza-se α = 1, como indicado por [16]. Além disso,

os coeficientes de Taylor são definidos por

a0 =
1

N + 1

N∑
k=0

h(θk), (2)

aj =
2

N + 1

N∑
k=0

h(θk) cos (jθk), (3)

onde

θk =
π

2

2k + 1

N + 1
, (4)

com k = 0,1, . . . , N ,

h(θk) =
1

Tn

{
ℜ
[
F

(
Ψ+

i

2g
cot

(
θk
2

))]
− cot

(
θk
2

)
ℑ
[
F

(
Ψ+

i

2g
cot

(
θk
2

))]}
,

(5)

para ℜ() e ℑ() representando, respectivamente, a parte real e imaginária da função e

Tn = 2g.

3. RESULTADOS E DISCUSSÕES

Nesta seção serão apresentados os resultados obtidos a partir do uso do método

de Weeks [17] na resolução da EDPP proposta por Heydarian, Millineux e Reed [7] pelo

método da Transformada de Laplace. Os algoritmos computacionais foram implementados

no software livre OCTAVE, versão 9.1.0, em um notebook Intel(R) Core(TM) I3-10110U,

@2.10GHz, com Sistema Operacional Windows de 64 bits e memória RAM de 4GB.

3.1. Equação Diferencial Parcial Parabólica

Considera-se o modelo matemático descrito por

∂2u(x, t)

∂x2
=

∂u(x, t)

∂t
, (6)

com condições inicial e de contorno dados por,

u(x,0) = 1 (7)
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e

u(0,t) = 0, u(1,t) = 0. (8)

Aplicando-se a TL na variável t, na Equação (6) e nas condições de contorno (Equação

(8)), e substituindo-se a condição inicial (Equação (7)), reescreve-se as Equações (6) e (8)

no domı́nio de Laplace

d2U(x,s)

dx2
− SU(x,s) = −1, (9)

U(0,s) = 0, U(1,s) = 0. (10)

A solução do problema transformado representados pelas Equações (9) e (10) é dada

por

U(x,s) = −1

s
cosh(

√
sx) +

cosh(
√
s)− 1

s senh(
√
s)

senh(
√
sx) +

1

s
. (11)

Manipulando-se algebricamente a Equação (11) e substituindo as fórmulas de adição

para funções hiperbólicas [14], chega-se a

U(x,s) =
1

s senh(
√
s)

[
senh[

√
s(x− 1)− senh(

√
sx) + senh(

√
s)
]
. (12)

Aplicando-se a Transformada de Laplace inversa [14] e suas propriedades, na Equação

(12), chega-se a solução da EDPP,

u(x,t) =
4

π

+∞∑
n=0

e−(2n+1)2π2t

2n+ 1
sen[(2n+ 1)πx]. (13)

Para efeitos de simulação e geração das tabelas e gráficos, o somatório da Equação

(13) foi truncado em M = 5 termos.

3.2. Aplicação do Método de Weeks na Obtenção da Solução da EDPP

Uma vez que o algoritmo de inversão da TL, usado aqui, aproxima a solução desejada

em termos de uma série (Equação (1)), saber o número de termos mais adequados para

que o método numérico forneça a melhor precisão posśıvel é de extrema importância para

o teste de eficiência. Entretanto, apesar dessa escolha poder ser feita de muitas formas,

poucas informações na literatura tem-se a esse respeito [6]. Este trabalho propõe que a

métrica para escolha do melhor N (ou No) seja feita em termos do Erro Absoluto Médio

(Eabs). Essa estratégia, foi descrita primeiramente por [2], também adotada por [11] e é

aqui adaptada como,
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Eabs(t) =
1

Nx

Nx∑
i=1

|ua(xi,t)− uW (xi,t)|, xi ∈ [0, 1], t ∈ ℜ+, (14)

onde ua representa a função transformada de forma anaĺıtica, uW , de forma numérica por

meio do método de Weeks e Nx representa a quantidade de valores de x utilizados para

obter o perfil de solução. Em especial, para a geração dos resultados, optou-se por um

intervalo 0 ≤ x ≤ 1, com 11 subdivisões.

Para medir a sensibilidade da aproximação da solução da EDPP pelo método numérico

proposto, em termos da variável t, a métrica do Erro Absoluto Médio foi aplicada da se-

guinte forma: para cada instante de t desejado (t = 0,005, t = 0,05 e t = 0,5) uma versão

da Equação (1) para uW foi executada para diferentes valores de N (N = 1, . . . , 50),

na forma de varredura, e os respectivos resultados foram substitúıdos na Equação (14).

Então, para cada valor de t, o valor de N , que resultou no menor Eabs, foi chamado de N

ótimo (ou No) e usado para a simulação dos perfis aqui apresentados.

Para o primeiro caso, onde t = 0,005, obteve-se um Erro Absoluto Médio de 5,7605×
10−5, sendo seu respectivo No = 21 (Figura 1).

Figura 1. Erro Absoluto Médio e No para t = 0,005. Fonte: O autor.

A partir da aplicação da fórmula do Erro Absoluto Médio para t = 0,05, foi obtido

um No = 35, gerando um erro de 5,9496× 10−6 (Figura 2). Já para o terceiro caso, onde

t = 0,5, obteve-se No = 30, gerando um Erro Absoluto Médio de 1,0331 × 10−6 (Figura

3).

As Tabelas 1, 2 e 3 apresentam comparações entre as soluções anaĺıtica e numérica

para diferentes valores de x e t.

ST6 5



XII ERMAC-RS, IME-UFRGS, Porto Alegre – 02 a 04 de julho de 2025

Figura 2. Erro Absoluto Médio e No para t = 0,05. Fonte: O autor.

Figura 3. Erro Absoluto Médio e No para t = 0,5. Fonte: O autor.

Tabela 1. Solução anaĺıtica e Numérica para t = 0,005. Fonte: o autor.

x 0,1 0,2 0,3 0,4 0,5

Solução anaĺıtica 0,682709732 0,954477537 0,997306169 0,999950376 0,999976695

Solução numérica 0,682742007 0,954542066 0,997271535 0,999826448 0,999853766

Tabela 2. Solução anaĺıtica e Numérica para t = 0,05. Fonte: o autor.

x 0,1 0,2 0,3 0,4 0,5

Solução anaĺıtica 0,244248060 0,461646521 0,630401071 0,736327185 0,772311606

Solução numérica 0,244250210 0,461640593 0,630392283 0,736316791 0,772300681
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Tabela 3. Solução anaĺıtica e Numérica para t = 0,5. Fonte: o autor.

x 0,1 0,2 0,3 0,4 0,5

Solução anaĺıtica 0,002829665 0,005382343 0,007408160 0,008708815 0,009156990

Solução numérica 0,002829513 0,005379344 0,007410235 0,008708707 0,009156292

Na Figura 4, pode-se observar graficamente a solução da EDPP por meio do método

de Weeks, utilizando-se No = 35, 0 ≤ t ≤ 0.05 e M = 30.

Figura 4. Perfil da solução numérica pelo método de Weeks. Fonte: O autor.

4. CONSIDERAÇÕES FINAIS

Neste trabalho, avaliou-se o método de Weeks como uma alternativa para a inversão

numérica da Transformada de Laplace quando aplicada na obtenção da solução de uma

Equação Diferencial Parcial Parabólica. No processo, o cálculo do Erro Absoluto Médio

foi utilizado como forma de determinar o valor do N (responsável pelo truncamento do

número de termos da série) que deve ser usado para proporcionar o melhor ajuste dos

perfis numéricos em relação aos anaĺıticos. A este, deu-se o nome de N ótimo (No).

Para cada um dos valores de t escolhidos, o valor de No foi obtido por varredura. Ob-

servando os resultados, constatou-se que à medida que t aumenta, No também é alterado.

E que, dependendo do valor de t, a ordem dos Erros Absolutos Médios tem uma senśıvel

variação (ficando na faixa de 10−5 a 10−6). Vale destacar que o algoritmo de Weeks im-

plementado foi capaz, de forma geral, de fornecer bons resultados, muito próximos aos

obtidos analiticamente, a um custo computacional extremamente baixo.

Como proposta de continuidade, sugere-se o estudo de novos métodos de inversão

numérica da Transformada de Laplace, baseados em outras expansões polinomiais e, ainda,

particularmente, utilizar o método da Quadratura Gaussiana para a obtenção da solução

de uma Equação Diferencial Parcial Parabólica.
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