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De acordo com [2] redes neurais recorrentes long short-term memory (LSTMs) emer-
giram como um modelo eficaz e escalavel para diversos problemas de aprendizado rela-
cionados a dados sequenciais. Métodos anteriores [3] para resolver esses problemas nao
escalavam para dependéncias de prazos prolongados. LSTMs, por outro lado, sao gerais
e eficazes na captura de dependéncias temporais de longo prazo.

Um esquema de bloco da arquitetura de LSTM mais popular (LSTM wvanilla) pode
ser visto na Figura 1. Ele apresenta trés gates (entrada, esquecimento, saida), entrada do
bloco, uma tnica célula (o Carrossel de Erro Constante), uma fungao de ativagao de saida
e conexoes peephole. A saida do bloco é conectada recorrentemente de volta a entrada do

bloco e a todos os gates.
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Figura 1. Esquema em blocos de uma rede LSTM. Fonte: Greff [2].

Na Figura 1, z representa a saida do bloco de input; i, do input gate; f, do forget
gate; o, do output gate; c, da célula; e y, do bloco. Para essas saidas, sao atribuidos
pesos W e pesos recorrentes R e realizadas a propagacao e retropropagacao para suas
atualizagoes. As equagoes de cada bloco, dado que ® é o produto de Hadamard, sao
definidas como 7' = W.x! + Ry'™' +b,, 2 = g(&%), & = Wiz + Ry + p; ©
1 + b, it = O(gt)7 f'“t _ fot + Rfytfl + py ® i1 —|—bf, ft _ J(J'Et)7 o=
dodt+dtoft o =Wal+ Ryt +p, 0 +b,, o =0o(d), y =h() oo
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Baseado no trabalho de [1], utilizando a arquitetura de rede com nés ocultos de
estrutura 100 — 50 — 50 — 50 — 1 com otimizador RMSProp e funcao perda de Mean Square
Error, 150 épocas de treinamento e taxa de aprendizado 0,001, a rede é treinada com os
precos baseados nos dados da biblioteca yfinance (https://pypi.org/project/yfinance/) de
fechamento da acdo WEGE3.SA do dia 01/01/2023 até 01/01/2024. Sendo, neste caso,
os valores de entrada do modelo as datas de fechamento e os valores de saida os pregos da
agao. A partir dessa rede treinada, tentou-se prever o preco dessa agao do dia 01/01/2024

até 01/06/2024. Os resultados sao apresentados na Figura 2.
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Figura 2. Preco real e previsao do preco de fechamento da acao WEG3.SA. Fonte: Dos
Autores.

A estrutura LSTM mostrou-se eficiente para previsao dos pregos de agoes, mesmo
com dados de longo prazo. O seu Mean Absolute Error (MAE) foi em torno de 0,65,
significando que em média por dia se tem um erro de R$ 0,65 na previsao do preco da

acao.
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