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RESUMO

O Brasil é o maior produtor e segundo maior consumidor de café no mundo. Assim, o setor
cafeeiro estd sempre em busca de novas tecnologias que possam trazer mais facilidade, agili-
dade e qualidade para o produto. Um fator crucial para a qualidade do café é determinacao do
melhor momento para fazer a colheita que deve coincidir com a maior porcentagem de graos
maduros na lavoura. Uma das maneiras de determinar o grau de maturacdo dos frutos € por
meio de uma amostragem com colheita e contagem manual. Esse método € trabalhoso e pode
levar a uma informacdo imprecisa. O presente trabalho teve como objetivo analisar e verificar
a eficicia de técnicas de Visao Computacional para determinar o grau de maturagao do café
com base em fotos dos frutos na lavoura. Foram treinados e validados modelos de inteligéncia
artificial baseados no RT-DETR utilizando uma base de dados de fotos com frutos de café previ-
amente anotados. Os experimentos de validagdes mostraram que o modelo R5S0VD apresentou
os melhores resultados.

Palavras-chave: Ponto de Colheita do Café; Visdo Computacional; Inteligéncia Artificial.

1 INTRODUCAO

O Brasil € o maior produtor e o segundo maior consumidor de café mundialmente, o que
estimula a adocao de tecnologias que aumentem a eficiéncia e a qualidade da producao cafeeira
(ABIC| [2023). Entre essas tecnologias, a Visdo Computacional tem se destacado como uma
ferramenta que possibilita a andlise automatizada das caracteristicas dos graos de café, como
cor, forma e tamanho, auxiliando no monitoramento do ponto ideal de colheita (BAZAME et
al2022; RODRIGUES, 2022)).

A qualidade do café depende de vérias etapas, desde o cultivo até a preparacdo da bebida,
sendo o ponto de colheita uma fase essencial para o produto final. O ponto ideal de colheita
ocorre quando a lavoura possui predominantemente frutos maduros, minimizando a presenca

de grdos verdes ou secos, o que favorece a qualidade final do produto (RIBEIRO et al., 2021}
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FONSECA et al., 2015;|CHALFOUN; CARVALHO, 1997). Tradicionalmente, a identificacao
deste ponto é feita por amostragem manual, um método que exige esfor¢o fisico e apresenta
imprecisdoes (MATIELLO et al.| 2005)).

Este trabalho teve como objetivo desenvolver um modelo de inteligéncia artificial em
Visao Computacional para estimar o grau de maturacdo dos graos de café com base em fotos.
Diversos modelos foram treinados com imagens coletadas diretamente das lavouras e, apds o

treinamento, foram validados para identificar o modelo com o melhor desempenho.

2 METODOLOGIA

A primeira etapa no desenvolvimento deste trabalho foi a construcao de uma base de da-
dos com fotos de graos de café em diferentes estdgios de maturacdo. As imagens passaram por
um processo de anotagdo para marcar os frutos de café, utilizando o formato Common Objects
in Context (COCO) e o software Makesense.ai[kLIN et al.,|2014)). Inicialmente, foi escolhido o
método de anotacdo em poligonos para capturar regides com vdarios frutos. No entanto, mesmo
apods a conversao das anotagdes, nao foi possivel treinar os modelos de inteligéncia artificial.

Foi realizada uma busca por novas bases de dados. Nessa busca, foi encontrada a Coffee
Fruit Maturity, composta por 859 imagens. A referida base conta com mais de 11 mil anotacdes
individuais nos frutos, no formato de poligono. Nesse caso, foi possivel converter as anotacoes,
preservando a identificagdo individual dos graos de café. As Figuras[I(a)| e [I(b) mostram, res-
pectivamente, uma imagem com a anotacao original em formato de poligonos e sua conversao
para retangulos.

Com a base de dados preparada, os modelos de inteligéncia artificial foram treinados
utilizando a arquitetura RT-DETR (ZHAO et al., [2024). Os experimentos foram realizados em
um computador pessoal equipado com processador Intel Core i7-11700, 16 GB de memodria
RAM e placa de video Nvidia GeForce RTX 3070 com 8 GB de memoria. Para avaliar o
desempenho dos modelos, os dados foram divididos em 70% para treinamento e 30% para
valida¢do, com divisdo aleatdria (semente 42).

Durante o treinamento, utilizou-se a métrica de erro Generalized Intersection over
Union (GIoU), que considera a interse¢do, a unido e a distncia entre as caixas preditas e reais.
Na fase de validagdo, foram aplicadas as métricas Average Precision (AP) e Average Recall
(AR). A AP calcula a precisdao média do modelo em diferentes limiares de confianga, enquanto

a AR mede a capacidade do modelo de detectar corretamente os objetos, considerando vérias

! https://www.makesense.ai/
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(a) Anotag@o em poligonos

Fonte: Elaborado pelos autores, 2024.
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(b) Anotacdo em retangulos

taxas de intersecdo Intersection over Union (IoU) entre caixas preditas e reais. Os limiares de

confianca variaram de 0,5 a 0,95.

3 RESULTADOS E DISCUSSOES

Foram testados cinco dos seis modelos RT-DETR disponiveis. O modelo R101VD, com

76 milhdes de parametros, ndo pdde ser treinado porque a memoria na GPU nio foi suficiente.

A Figura mostra a evolugdo do treinamento dos modelos testados. E possivel observar que o

erro (GIoU) cai conforme o nimero de épocas aumenta, atingindo um limiar aceitdvel em 72

épocas.
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Fonte: Elaborado pelos autores, 2024.
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A Tabela[Imostra os resultados de validagio dos modelos com seus respectivos nimeros
de parametros. Quanto maior o nimero de parametros, mais complexo e mais pesado é o
treinamento. Por outro lado, é possivel observar que os modelos mais complexos apresentam
melhores resultados nas medidas de AP e AR. Os resultados indicam que o modelo R50VD
apresentou o melhor desempenho geral entre os modelos avaliados. Embora o treinamento
com o modelo R101VD nao tenha sido possivel devido a limitagdes de hardware, os modelos

testados sdo capazes de detectar os frutos de café nas fotos.

Tabela 1 — Avaliagao dos modelos

Modelo Parametros (milhoes) AP AR
R18VD 20 0.603 | 0.917
R34VD 31 0.614 | 0.929
DLA34 34 0.607 | 0.934
R50VD_M 36 0.660 | 0.930
R50VD 42 0.669 | 0.938

Fonte: Elaborado pelos autores, 2024.

4 CONCLUSOES

O presente trabalho buscou facilitar a identificacdo do ponto ideal de colheita do café
por meio de fotos. Foi preparada uma base de dados com imagens de diferentes estdgios de
maturacdo dos frutos. Foram treinados e validados modelos de inteligéncia artificial baseados
no RT-DETR. Os experimentos de validagao mostraram que o modelo R50VD apresentou os
melhores resultados.

Com a conclusdo do presente trabalho, algumas possibilidades de trabalhos futuros inte-
ressantes podem ser elencadas. Como forma de aprimorar a precisao e aplicabilidade, técnicas
de processamento digital de imagem podem ser usadas para analisar as regides identificadas,
determinando automaticamente o grau de maturacdo do café. Além disso, a integracao da inte-
ligéncia artificial desenvolvida com drones e dispositivos moveis pode dar origem a tecnologias

promissoras para andlise do grau de maturacdo de café de forma pratica.

Agradecimentos: Os autores agradecem a FAPEMIG pela concessao de bolsa e ao IFMG por

viabilizar o desenvolvimento do projeto.
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