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INTRODUÇÃO  

Avanços tecnológicos expandiram o mercado de equipamentos elétrico eletrônicos (EEE), 

ocasionando uma produção extensiva de resíduos de equipamentos elétricos e eletrônicos (REEE) 

(Naseri et al., 2023, Vakilchap e Mousavi, 2024).  As placas de circuito impresso (PCBs) são 

componentes essenciais em praticamente todos os dispositivos eletrônicos, desde smartphones e 

computadores até eletrodomésticos e dispositivos médicos. Esse crescimento na demanda por 

eletrônicos tem gerado um aumento proporcional na quantidade de REEE, dos quais os PCBs 

representam uma fração significativa devido à sua complexidade e sua composição com metais valiosos, 

como cobre, alumínio, prata e ouro, e metais perigosos, como chumbo, estanho, bromo, mercúrio e 

níquel, que representam riscos ambientais, (Narayanasamy, 2017; Li et al., 2021). 

Alguns fungos têm a capacidade de sobreviver em ambientes contendo metais tóxicos devido 

as suas propriedades fisiológicas, incluindo a produção de enzimas e metabólitos secundários que 

reduzem a toxicidade do metal (Liu et al., 2024). Além disso, a parede celular do fungo apresenta grupos 

funcionais que se ligam com metais pesados por meio de adsorção eletrostática ou complexação 

(Priyadarshini et al., 2021; Liu et al 2024). 

Os fungos podem apresentar capacidades de degradar poluentes e minimizar o efeito de metais 

pesados no meio ambiente (Dusengemungu et al., 2022). Portanto, o objetivo deste trabalho foi testar a 

capacidade metabólica do fungo filamentoso Aspergillus tubingensis UCP1208 em meio contendo 

partículas de resíduos elétricos triturados de PCBs em diferentes concentrações, visando utilizá-lo em 

tratamentos biológicos sustentáveis e com baixo custo para biorremediar os poluentes e recuperar metais 

valiosos presentes nesses resíduos. 

 

MATERIAIS E MÉTODOS  

O meio de cultura utilizado para avaliar a tolerância do fungo Aspergillus tubingensis frente a 

diferentes concentrações de placas de circuito impresso (PCBs) foi Ágar Sabouraud (10 g/L de peptona, 

40 g/L de dextrose e 20 g/L de ágar). Os PCBs foram previamente triturados e peneirados com 

granulometria mesh 60 (250 μm) e adicionados ao meio nas concentrações de 0,3%, 0,6% e 1% 

(equivalente a 0,03 g/L, 0,06 g/L e 0,1 g/L, respectivamente). Após a adição dos PCBs, o meio foi 

esterilizado em autoclave e distribuído em placas de Petri. O meio Ágar Sabouraud sem PCBs foi 

utilizado como controle.  

As placas foram incubadas a 28°C por 7 dias. Após o período de incubação, foram realizadas 

análises macroscópicas e microscópicas para avaliar o crescimento do fungo e possíveis alterações 

morfológicas em resposta às concentrações de PCBs,  



 

 

RESULTADOS E DISCUSSÃO  

A tolerância do fungo filamentoso Aspergillus tubingensis UCP 1208 foi avaliada utilizando 

partículas trituradas de PCBs para investigar seu comportamento frente a diferentes concentrações de 

metais presentes nesses resíduos.  

Após 7 dias de exposição, o fungo apresentou alterações na esporulação e no crescimento 

micelial, como mostrado na Figura 1. Na Figura 1A, correspondente ao controle, observa-se uma 

produção abundante de esporos pigmentados. No entanto, quando submetido a diferentes concentrações 

de PCBs, ocorreram alterações significativas na esporulação. Apesar dessas mudanças, o crescimento 

micelial não foi inibido (Figuras 1B, 1C e 1D). Além disso, a coloração do meio, que inicialmente 

apresentava uma tonalidade esverdeada devido à presença dos PCBs, tornou-se amarelada após o 

crescimento do fungo, sugerindo a produção de ácidos (Figuras 1D). Segundo Palanível et al. (2023), 

fungos desse gênero podem produzir ácidos como oxálico, cítrico, maleico e lático. Quando expostos a 

metais pesados, esses ácidos são produzidos em maiores quantidades, auxiliando no processo de 

biolixiviação (Liu et al., 2024). 

 

Figura 1 – Aspectos macroscópicos do fungo Aspergillus tubingensis em placas de Petri contendo meio 

Sabouraud com partículas de PCBs. (A) controle. (B) 0.3% de PCBs; (C) 0.6% de PCBs e (D) 1% de 

PCBs 

 
Fonte: Autor (2024). 

 

Na análise microscópica, como mostra na Figura 2, mostra o Aspergillus tubingensis UCP 1208, 

a produção de estruturas reprodutivas (produção de conídios) e ausência de estruturas de resistência, no 

meio sem adição do resíduo. Na figura 2B, revela a produção de clamidósporos, estrutura de resistência, 

resultado do estresse submetido ao resíduo a 1%. A Figura 2B. A produção dessas estruturas indica um 

mecanismo de resposta desenvolvido pelo microrganismo para se adaptar a um ambiente com altas 

concentrações de metais tóxicos. Além disso, o micélio se apresentou mais compacto em relação ao 

controle. Segundo essa alteração é devido a altas concentrações de metais, especialmente o cobre, que 

interferem na síntese de quitina da parede celular.   

 

Figura 2. Análise Microscópica do Aspergillus tubingensis UCP 1208. (A) Meio controle, com o fungo 

crescendo sem a adição de PCBs, mostrando a produção de estruturas reprodutivas (conídios).; (B) 

Cultivo com 1% de PCBs, apresentando a presença de clamidósporos, indicativos de estresse devido ao 

resíduo. 

                  
                                                                Fonte: Autor (2024). 



 

 

CONSIDERAÇÕES FINAIS  

O estudo confirmou que Aspergillus tubingensis UCP 1208 demonstra tolerância e adaptações 

a diferentes concentrações de partículas de PCBs. A análise macroscópica, mostrou que o crescimento 

micelial não foi inibido pelas concentrações do resíduo testadas e que a alteração na coloração do meio 

sugere a produção de ácidos. A análise microscópica indicou a produção estruturas de resistência, em 

resposta à concentração mais alta de PCBs, indicando uma adaptação ao estresse causado pelos metais.  

Esses resultados indicam que A. tubingensis UCP 1208 pode ser eficaz na biorremediação de 

resíduos eletrônicos, devido à sua tolerância a metais pesados e à capacidade de produzir ácidos que 

favorecem a biolixiviação de metais. As evidências destacam o potencial do fungo para aplicações em 

processos de biorremediação e recuperação de metais preciosos, contribuindo para a gestão sustentável 

de resíduos eletrônicos.  

 

PALAVRAS-CHAVE: Resistência fúngica. PCBs. Fungo filamentoso. Biolixiviação. Metais 

preciosos. 
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